Генетика — Википедия
Гене́тика (от греч. γενητως — порождающий, происходящий от кого-то[1][2][3]) — раздел биологии, занимающийся изучением генов, генетических вариаций и наследственности в организмах[4][5][6][7][⇨].
В зависимости от объекта исследования выделяют генетику растений, животных, микроорганизмов[en], человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие.
Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генной инженерии[8].
Наблюдение того, что живые существа наследуют черты[en] от своих родителей, использовалось с доисторических времен для улучшения сельскохозяйственных растений и животных посредством селекционного выведения (искусственного отбора)[9]. Начало современной генетике было заложено в работах августинского монаха Грегора Менделя в середине 19-го века[10].
Первым слово «генетика» использовал венгерский дворянин Имре Фестерик, описавший несколько правил генетического наследования в своей работе «Генетический закон природы» (нем. Die genetische Gesätze der Natur, 1819). Его второй закон аналогичен опубликованному Менделем. В третьем законе он разработал основные принципы мутации (поэтому его можно считать предшественником Хуго Де Фриз)[11].
Смешивание наследования приводит к усреднению каждой характеристики, что, как отметил инженер Флеминг Дженкин, делает невозможным эволюцию путем естественного отбора.
Работе Менделя предшествовали другие теории наследования. В XIX веке была популярна теория слитной наследственности[en], предложенная в работе Чарльза Дарвина «Происхождение видов» 1859 года, согласно которой индивиды наследуют среднее значение черты от своих родителей[12]. Однако работа Менделя предоставила примеры, где признаки не смешивались после гибридизации, показывая, что признаки формируются комбинациями различных генов, а не их смесью. Теперь смешивание признаков в потомстве объясняется действием множества генов с количественные эффектами[en]. Другой теорией, получившей некоторую поддержку, стала теория наследования приобретенных характеристик, говорящая о том, что люди наследуют черты, укрепленные их родителями. Известно, что эта теория, обычно ассоциируемая с Жаном-Батистом Ламарком, неверна, так как опыт отдельных людей не влияет на гены, которые они передают своим детям[13]. Хотя доказательства в области эпигенетики возродили некоторые аспекты теории Ламарка[14]. Другие теории включали пангенезис Чарльза Дарвина и её трактовку Фрэнсисом Гальтоном[15].
Менделевская и классическая генетика[править | править код]
Современная генетика началась с изучения Менделем природы наследования у растений. В своей работе «Эксперименты по гибридизации растений» (нем. Versuche über Pflanzenhybriden), представленной в 1865 году Обществом исследования природы (нем. Naturforschender Verein) в Брно, Мендель проследил закономерности наследования некоторых признаков у растений гороха и математически описал их[16]. Хотя этот тип наследования можно было наблюдать только по нескольким признакам, работа Менделя предполагала, что наследственность была частичной, а не приобретенной, и что образцы наследования многих признаков можно объяснить с помощью простых правил и соотношений.
Важность работы Менделя получила широкое признание только после его смерти, когда в 1900 году Хьюго де Фриз и другие ученые заново открыли его исследования. Уильям Бейтсон, сторонник работы Менделя, ввел слово «генетика» в 1905 году[17][18] (прилагательное «генетическое», образованное от греческого слова «генезис» — γένεσις, «происхождение», предшествует существительному и впервые использовалось в биологическом смысле в 1860 году[19]). Бейтсон как выступал в качестве наставника, так и в значительной степени получил помощь от других ученых из колледжа Ньюнхэм в Кембридже, в частности, работы Бекки Сондерс[en], Норы Дарвин Барлоу[en] и Мюриэл Уолдейл Онслоу[en][20]. Бейтсон популяризировал использование слова «генетика» для описания изучения наследования в своем вступительном слове на Третьей международной конференции по гибридизации растений в Лондоне в 1906 году[21].
После повторного открытия работы Менделя ученые попытались определить, какие молекулы в клетке ответственны за наследование. В 1911 году Томас Морган заявил, что гены находятся на хромосомах, основываясь на наблюдениях мутации белого глаза, связанной с полом, у плодовых мух[22]. В 1913 году его ученик Альфред Стюртевант использовал феномен сцепленного наследования, чтобы показать, что гены расположены на хромосоме линейно[23].
Молекулярная генетика[править | править код]
Хотя гены, как было известно, существуют в хромосомах, они состоят как из белка, так и из ДНК, и ученые не знали, какой из этих двух компонентов отвечает за наследование. В 1928 году Фредерик Гриффит открыл феномен трансформации. Эксперимент Гриффита показал, что погибшие бактерии способны переносить генетический материал, чтобы «трансформировать» ещё живые бактерии. Шестнадцать лет спустя, в 1944 году, эксперимент Эйвери-Маклауда-Маккарти определил ДНК как молекулу, ответственную за трансформацию[24].
Дискретное наследование и законы Менделя[править | править код]
На самом фундаментальном уровне наследование в организмах происходит путем передачи отдельных наследуемых единиц, называемых генами, от родителей к потомству[25]. Это свойство впервые наблюдал Грегор Мендель, который изучал сегрегацию наследственных признаков у саженцев гороха[16][26]. В своих экспериментах по изучению цвета цветка Мендель заметил, что цветы каждого растения гороха были либо фиолетовыми, либо белыми, но никогда не были промежуточным звеном между двумя цветами. Эти разные, отдельные версии одного и того же гена называются аллелями.
- Гибридологический — изучение наследственных свойств организма с помощью скрещивания его с родственной формой и последующим анализом признаков потомства. Основной метод генетики.
- Цитогенетический — изучение структуры и числа хромосом.
- Биохимический — изучение изменений в биохимических параметрах организма, возникающих в результате изменения генотипа.
- Онтогенетический — изучение проявления гена в процессе онтогенеза.
- Популяционный — изучение генетического состава популяций. Позволяет узнать распространение отдельных генов в популяции и вычислить частоту аллелей и генотипов.
- Генеалогический — изучение и составление родословных. Позволяет установить тип и характер наследования признаков.
- Близнецовый — изучение близнецов с одинаковыми генотипами. Позволяет выяснить влияние среды на формирование различных признаков.
- Генная инженерия — использование природных или искусственно созданных генов.
- Математический — статистическая обработка полученных данных.
Изначально наследование изучалось у широкого диапазона организмов, однако учёные стали специализироваться на генетике конкретных видов. Модельными становятся те организмы, по которым уже накоплено много научных данных, которые уже исследовались и легко содержатся в лабораторных условиях. Модельные организмы выбирались отчасти благодаря удобству — короткому времени генерации (быстрой смены поколений) и возможности генетических манипуляций. В результате, в генетических исследованиях некоторые виды стали основными[27].
К широко используемым в генетических исследованиях модельным организмам относят бактерию Escherichia coli, растение Arabidopsis thaliana, дрожжи Saccharomyces cerevisiae, нематоду Caenorhabditis elegans, плодовую муху Drosophila melanogaster и обыкновенную домовую мышь (Mus musculus).
19 марта 2015 года группа ведущих биологов призвала к всемирному запрету на клиническое использование методов редактирования генома человека, в частности, CRISPR и цинкового пальца, в результате которых внесённые изменения могут быть унаследованы[28][29][30][31]. В апреле 2015 года китайские исследователи сообщили о результатах фундаментальных исследований по редактированию ДНК нежизнеспособных человеческих эмбрионов с использованием CRISPR[32][33].
- ↑ Genetikos (γενετ-ικός) (неопр.). Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University.
- ↑ Genesis (γένεσις) (неопр.). Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University.
- ↑ Genetic (неопр.). Online Etymology Dictionary.
- ↑ Genetics and the Organism: Introduction // An Introduction to Genetic Analysis (неопр.) / Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart. — 7th. — New York: W.H. Freeman (англ.)русск., 2000. — ISBN 978-0-7167-3520-5.
- ↑ Hartl D, Jones E (2005)
- ↑ the definition of genetics (англ.). www.dictionary.com. Дата обращения 25 октября 2018.
- ↑ Большой толковый словарь русского языка / гл. ред. С. А. Кузнецов.. — СПб.: Норинт, 1998.
- ↑ Большой энциклопедический словарь. Биология / Гл. ред. М. С. Гиляров. — 3-е изд. — М.: Большая российская энциклопедия, 1999. — ISBN 5852702528.
- ↑ DK Publishing. Science: The Definitive Visual Guide (неопр.). — Penguin, 2009. — С. 362. — ISBN 978-0-7566-6490-9.
- ↑ Weiling, F. Historical study: Johann Gregor Mendel 1822–1884 (англ.) // American Journal of Medical Genetics (англ.)русск. : journal. — 1991. — Vol. 40, no. 1. — P. 1—25; discussion 26. — doi:10.1002/ajmg.1320400103. — PMID 1887835.
- ↑ Poczai P.; Bell N.; Hyvönen J. Imre Festetics and the Sheep Breeders’ Society of Moravia: Mendel’s Forgotten «Research Network» (англ.) // PLoS Biology : journal. — 2014. — Vol. 12, no. 1. — P. e1001772. — doi:10.1371/journal.pbio.1001772. — PMID 24465180.
- ↑ Matthew Hamilton. Population Genetics (неопр.). — Georgetown University, 2011. — С. 26. — ISBN 978-1-4443-6245-9.
- ↑ Lamarck, J-B (2008). In Британская энциклопедия. Retrieved from Encyclopædia Britannica Online on 16 March 2008.
- ↑ Singer, Emily. A Comeback for Lamarckian Evolution? (англ.) // Technology Review (англ.)русск. : magazine. — 2009. — 4 February.
- ↑ Peter J. Bowler, The Mendelian Revolution: The Emergency of Hereditarian Concepts in Modern Science and Society (Baltimore: Johns Hopkins University Press, 1989): chapters 2 & 3.
- ↑ 1 2 Blumberg, Roger B. Mendel’s Paper in English (неопр.). Архивировано 13 января 2016 года.
- ↑ genetics, n., Оксфордский словарь английского языка, 3rd ed.
- ↑ Bateson W. Letter from William Bateson to Alan Sedgwick in 1905 (неопр.). The John Innes Centre. Дата обращения 15 марта 2008. Архивировано 13 октября 2007 года. Обратите внимание, что письмо было адресовано Адаму Седжвику, зоологу и «Читателю по морфологии животных» в Тринити-колледж (Кембридж)
- ↑ genetic, adj., Oxford English Dictionary, 3rd ed.
- ↑ Richmond, Marsha L. Opportunities for women in early genetics (англ.) // Nature Reviews Genetics : journal. — 2007. — November (vol. 8, no. 11). — P. 897—902. — doi:10.1038/nrg2200. — PMID 17893692. Архивировано 16 мая 2008 года.
- ↑ Bateson, W (1907). «The Progress of Genetic Research». Wilks, W Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding, London: Royal Horticultural Society. Первоначально названный «Международная конференция по гибридизации и селекции растений», название было изменено в результате речи Бейтсона. Видете Cock A. G., Forsdyke D. R. Treasure your exceptions: the science and life of William Bateson (англ.). — Springer (англ.)русск., 2008. — P. 248. — ISBN 978-0-387-75687-5.
- ↑ Moore, John A. Thomas Hunt Morgan – The Geneticist (англ.) // Integrative and Comparative Biology (англ.)русск. : journal. — Oxford University Press, 1983. — Vol. 23, no. 4. — P. 855—865. — doi:10.1093/icb/23.4.855.
- ↑ Sturtevant A. H. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association (англ.) // The Journal of Experimental Biology : journal. — The Company of Biologists (англ.)русск., 1913. — Vol. 14. — P. 43—59. — doi:10.1002/jez.1400140104. Архивировано 27 февраля 2008 года.
- ↑ Avery, OT; MacLeod, CM; McCarty, M. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III (англ.) // The Journal of Experimental Medicine (англ.)русск. : journal. — Rockefeller University Press (англ.)русск., 1944. — Vol. 79, no. 2. — P. 137—158. — doi:10.1084/jem.79.2.137. — PMID 19871359. Reprint: Avery, OT; MacLeod, CM; McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III (англ.) // The Journal of Experimental Medicine (англ.)русск. : journal. — Rockefeller University Press (англ.)русск., 1979. — Vol. 149, no. 2. — P. 297—326. — doi:10.1084/jem.149.2.297. — PMID 33226.
- ↑ Patterns of Inheritance: Introduction // An Introduction to Genetic Analysis (неопр.) / Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart. — 7th. — New York: W.H. Freeman (англ.)русск., 2000. — ISBN 978-0-7167-3520-5.
- ↑ Mendel’s experiments // An Introduction to Genetic Analysis (неопр.) / Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart. — 7th. — New York: W.H. Freeman (англ.)русск., 2000. — ISBN 978-0-7167-3520-5.
- ↑ The Use of Model Organisms in Instruction (неопр.) (недоступная ссылка). University of Wisconsin: Wisconsin Outreach Research Modules. Дата обращения 30 мая 2014. Архивировано 13 марта 2008 года.
- ↑ Wade, Nicholas. Scientists Seek Ban on Method of Editing the Human Genome, The New York Times (19 марта 2015). Архивировано 19 марта 2015 года. Дата обращения 20 марта 2015.
- ↑ Pollack, Andrew. A Powerful New Way to Edit DNA, The New York Times (3 марта 2015). Архивировано 26 марта 2015 года. Дата обращения 20 марта 2015.
- ↑ Baltimore, David; Berg, Paul; Botchan, Dana; Charo, R. Alta; Church, George; Corn, Jacob E.; Daley, George Q.; Doudna, Jennifer A.; Fenner, Marsha; Greely, Henry T.; Jinek, Martin; Martin, G. Steven; Penhoet, Edward; Puck, Jennifer; Sternberg, Samuel H.; Weissman, Jonathan S.; Yamamoto, Keith R. A prudent path forward for genomic engineering and germline gene modification (англ.) // Science : journal. — 2015. — 19 March (vol. 348, no. 6230). — P. 36—38. — doi:10.1126/science.aab1028. — Bibcode: 2015Sci…348…36B. — PMID 25791083.
- ↑ Lanphier, Edward; Urnov, Fyodor; Haecker, Sarah Ehlen; Werner, Michael; Smolenski, Joanna. Don’t edit the human germ line (англ.) // Nature. — 2015. — 26 March (vol. 519, no. 7544). — P. 410—411. — doi:10.1038/519410a. — Bibcode: 2015Natur.519..410L. — PMID 25810189.
- ↑ Kolata, Gina. Chinese Scientists Edit Genes of Human Embryos, Raising Concerns, The New York Times (23 апреля 2015). Архивировано 24 апреля 2015 года. Дата обращения 24 апреля 2015.
- ↑ Liang, Puping et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes (англ.) // Protein & Cell (англ.)русск. : journal. — 2015. — 18 April (vol. 6, no. 5). — P. 363—372. — doi:10.1007/s13238-015-0153-5. — PMID 25894090.
- Айала Ф., Кайгер Дж. Современная генетика: В 3 т. М.: Мир, 1987—1988. Т. 1. 295 с. Т. 2 368 с. Т. 3. 335 с.
- Алиханян С. И., Акифьев А. П., Чернин Л. С. Общая генетика. — М.: Высш. шк., 1985. — 446 с.
- Гершензон С. М. Основы современной генетики. — Киев: Наук. думка, 1983. — 558 с.
- Гершкович И. Генетика. — М.: Наука, 1968. — 698 с.
- Дубинин Н. П. Генетика. — Кишинёв: Штииница, 1985. — 533 с.
- Жимулёв И. Ф. Общая и молекулярная генетика: учебное пособие для студентов университетов, обучающихся по направлению 510600 — Биология и биологическим специальностям. — 2-е, испр. и доп. — Новосибирск: Новосибирск : Сиб. унив. изд-во, 2003. — 478 с. — 2500 экз. — ISBN 5-94087-077-5
- Инге-Вечтомов С. Г. Генетика с основами селекции. 2-е изд., перераб. и доп. — СПб.: 2010. — 720 с.
- Клаг Уильям С., Каммингс Майкл Р. Основы генетики. — М.: Техносфера, 2007. — 896 с.
- Льюин Б. Гены: Пер. с англ. — М.: Мир, 1987. — 544 с.
- Пухальский В. А. Введение в генетику. — М.: КолосС, 2007. — 224 с. (Учебники и учеб. пособия для студентов высш. учеб. заведений)
- Сингер М., Берг П. Гены и геномы: В 2 т. М.: Мир, 1998. Т. 1. 373 с. Т. 2. 391 с.
- Свирежев Ю. М., Пасеков В. П. Основы математической генетики. — М.: Наука, 1982. — 511 с.
- Мюнтцинг А. Генетика. — М.: Мир, 1967. — 610 с.
Генетика человека — Википедия
Гене́тика челове́ка — раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека. Эту отрасль условно подразделяют на антропогенетику, изучающую наследственность и изменчивость нормальных признаков человеческого организма, и медицинскую генетику. Генетика человека связана также с эволюционной теорией, так как исследует конкретные механизмы эволюции человека и его место в природе, вместе с психологией, философией и социологией[1].
Изучение наследственности и изменчивости человека затруднено вследствие невозможности применить многие стандартные подходы генетического анализа. В частности, невозможно осуществить направленное скрещивание или экспериментально получить мутации. Человек является трудным объектом для генетических исследований также из-за позднего полового созревания и малочисленности потомства. Особенности человека как генетического объекта отражаются на наборе доступных методов исследования[2].
Генеалогический метод[править | править код]
В генетике человека вместо классического гибридологического анализа применяют генеалогический метод, который состоит в анализе распределения в семьях (точнее, в родословных) лиц, обладающих данным признаком (или аномалией) и не обладающих им, что раскрывает тип наследования, частоту и интенсивность проявления признака и так далее. При анализе семейных данных получают также цифры эмпирического риска, то есть вероятность обладания признаком в зависимости от степени родства с его носителем. Генеалогическим методом уже показано, что более 1800 морфологических, биохимических и других признаков человека наследуется по законам Менделя. Многие признаки и болезни человека наследуются сцепленно с полом и обусловлены генами, локализованными в Х-хромосоме. Таких генов известно около 120. К ним относятся гены гемофилии А и В, недостаточности фермента глюкозо-6-фосфатдегидрогеназы, цветовой слепоты и другие.
Близнецовый метод[править | править код]
Другой метод — близнецовый. Однояйцевые близнецы (ОБ) развиваются из одной яйцеклетки, оплодотворённой одним спермием; поэтому их генотип идентичен. Разнояйцевые близнецы (РБ) развиваются из двух и более яйцеклеток, оплодотворённых разными спермиями; поэтому их генотипы различаются так же, как у братьев и сестёр (сибсов). Сравнение внутрипарных различий между ОБ и РБ позволяет судить об относительном значении наследственности и среды в определении свойств человеческого организма. В близнецовых исследованиях особенно важен показатель конкордантности, выражающий (в %) вероятность обладания данным признаком одним из членов пары ОБ или РБ, если его имеет другой член пары. Если признак детерминирован преимущественно наследственными факторами, то процент конкордантности намного выше у ОБ, чем у РБ. Например, конкордантность по группам крови, которые детерминированы только генетически, у ОБ равна 100 %. При шизофрении конкордантность у ОБ достигает 67 %, в то время как у РБ — 12,1 %; при врождённом слабоумии (олигофрении) — 94,5 % и 42,6 % соответственно. Подобные сравнения проведены в отношении ряда заболеваний. Исследования близнецов показывают, что вклад наследственности и среды в развитие самых разнообразных признаков различен и признаки развиваются в результате взаимодействия генотипа и внешней среды. Одни признаки обусловлены преимущественно генотипом, при формировании других признаков генотип выступает в качестве предрасполагающего фактора (или фактора, лимитирующего норму реакции организма на действия внешней среды).
Популяционно-статистический метод[править | править код]
Распространение мутаций среди больших групп населения изучает популяционная генетика человека, позволяющая составить карты распространения генов, определяющих развитие нормальных признаков и наследственных болезней. Особый интерес для этой генетики представляют изоляты — группы населения, в которых по каким-либо причинам (например, географическим, экономическим, социальным, религиозным) браки заключаются чаще между членами группы. Это приводит к повышению частоты кровного родства вступающих в брак, а значит, и вероятности того, что рецессивные гены перейдут в гомозиготное состояние и проявятся, что особенно заметно при малочисленности изолята.
Методами популяционной генетики пользуются органы здравоохранения для решения вопросов медицинского, медикаментозного и диагностического обеспечения населения. Данные популяционной генетики используются в практическом здравоохранении для расчета коечного фонда, количества необходимых специалистов, выделении финансов при организации лечебно-профилактической помощи при особо опасных, но редко встречающихся заболеваниях[3].
Цитогенетический метод[править | править код]
Широкое использование в генетике человека цитологических методов способствовало развитию цитогенетики, где основной объект исследования — хромосомы, то есть структуры клеточного ядра, в которых локализованы гены. Установлено (1956), что хромосомный набор в клетках тела человека (соматических) состоит из 46 хромосом, причём женский пол определяется наличием двух Х-хромосом, а мужской — Х-хромосомы и Y-xpoмосомы. В зрелых половых клетках находится половинное (гаплоидное) число хромосом. Митоз, мейоз и оплодотворение поддерживают преемственность и постоянство хромосомного набора как в ряду клеточных поколений, так и в поколениях организмов. В результате нарушений указанных процессов могут возникать аномалии хромосомного набора с изменением числа и структуры хромосом, что приводит к возникновению т. н. хромосомных болезней, которые нередко выражаются в слабоумии, развитии тяжёлых врождённых уродств, аномалий половой дифференцировки или обусловливают самопроизвольные аборты.
Дерматоглифический метод[править | править код]
Дерматоглифика — раздел медицинской генетики, изучающий наследственную обусловленность рисунков на коже кончиков пальцев, ладоней и подошв человека. Дерматоглифика может применяться для диагностики некоторых врождённых пороков развития, так как они сопровождаются характерным изменением не только рисунков пальцев и ладоней, но и основных сгибательных борозд на коже ладоней[4][3].
Рисунки кожных узоров строго индивидуальны и наследственно обусловлены. Процесс образования папиллярного рельефа пальцев, ладоней и стоп происходит в течение 3-6 месяца внутриутробного развития. В процессе формирования гребней на коже выделяют 3 этапа. Первый (подготовительный этап): на 8-10 неделе беременности происходит накопление индукторов и репрессоров для «запуска» генов, детерминирующих гребнеобразование и формирование папиллярных рисунков. Второй этап: на 10-24-й неделе наблюдаются генетически обусловленное формирование гребней и папиллярных узоров. Третий этап: с 24-й недели до момента рождения происходит формирование кожи как тактильного органа[3].
Успехи в развитии генетики человека сделали возможными предупреждение и лечение наследственных заболеваний. Один из эффективных методов их предупреждения — медико-генетическое консультирование с предсказанием риска появления больного в потомстве лиц, страдающих данным заболеванием или имеющих больного родственника. Достижения биохимической генетики человека раскрыли первопричину (молекулярный механизм) многих наследственно обусловленных дефектов, аномалий обмена веществ, что способствовало разработке методов экспресс-диагностики, позволяющих быстро и рано выявлять больных, и лечения многих прежде неизлечимых наследственных болезней. Чаще всего лечение состоит во введении в организм веществ, не образующихся в нём вследствие генетического дефекта, или в составлении специальных диет, из которых устранены вещества, оказывающие токсическое действие на организм в результате наследственно обусловленной неспособности к их расщеплению. Многие генетические дефекты исправляются с помощью своевременного хирургического вмешательства или педагогической коррекции. Практические мероприятия, направленные на поддержание наследственного здоровья человека, на охрану генофонда человечества, осуществляются через систему медико-генетических консультаций. Их основная цель — информировать заинтересованных лиц о вероятности риска появления в потомстве больных. К медико-генетическим мероприятиям относится также пропаганда генетических знаний среди населения, так как это способствует более ответственному подходу к деторождению. Медико-генетическая консультация воздерживается от мер принудительного или поощрительного характера в вопросах деторождения или вступления в брак, принимая на себя лишь функцию информации. Большое значение имеет система мер, направленных на создание наилучших условий для проявления положительных наследственных задатков и предотвращение вредных воздействий среды на наследственность человека.
Генетика человека представляет собой естественнонаучную основу борьбы с расизмом, убедительно показывая, что расы — это формы адаптации человека к конкретным условиям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойственных всем расам. Генетика человека показывает, что все расы равноценны (но не одинаковы) с биологической точки зрения и обладают равными возможностями для развития, определяемого не генетическими, а социально-историческими условиями. Констатация биологических наследственных различий между отдельными людьми или расами не может служить основанием для каких-либо выводов морального, юридического или социального порядка, ущемляющих права этих людей или рас.
Примеры доминантных и рецессивных признаков у людей | ||
---|---|---|
Части тела | Доминантный признак | Рецессивный признак |
Глаза | Большие | Маленькие |
Разрез глаз прямой | Разрез глаз косой | |
Монголоидный тип глаз | Европеоидный тип глаз | |
Верхнее веко нависающее | Верхнее веко нормальное | |
Длинные ресницы | Короткие ресницы | |
Близорукость | Норма | |
Дальнозоркость | Норма | |
Астигматизм | Норма | |
Карие (светло-карие и зеленые) | Серые или голубые | |
Предрасположенность к катаракте | Норма | |
Куриная слепота (ослабленное зрение в сумерках) | Норма | |
Рот | Способность загибать язык назад | Нет |
Способность свертывать язык трубочкой | Нет | |
Зубы при рождении | Отсутствие зубов при рождении | |
Выступающие вперед зубы и челюсти | Зубы и челюсти не выступают | |
Щель между резцами | Отсутствует | |
Предрасположенность к кариесу зубов | Норма | |
Полные губы | Тонкие губы | |
Габсбургская губа | Норма | |
Лицо и голова | Короткий череп (брахицефалия) | Длинный (долихоцефалия) |
Лицо круглое | Продолговатое | |
Подбородок прямой | Скошенный подбородок | |
Ямочка на подбородке | Гладкий подбородок | |
Ямочки на щеках | Гладкие щеки | |
Выдающиеся скулы | Норма | |
Веснушки | Отсутствие веснушкек | |
Подбородок длинный | Короткий | |
Подбородок широкий | Узкий и острый | |
Голос | Сопрано у женщин | Альт |
Бас у мужчин | Тенор | |
Нос | Крупный | Средней величины или маленький |
Узкий, острый, выступающий вперед | Широкий | |
Высокая и узкая переносица | Низкая и широкая переносица | |
Нос с горбинкой | Прямая или согнутая переносица | |
Кончик носа направлен прямо | Курносый нос | |
Широкие ноздри | Узкие ноздри | |
Уши | Свободная мочка | Приросшая мочка |
Острая верхушка уха (дарвиновский бугорок имеется) | Отсутствует | |
Лопоухость | Норма | |
Слух | Абсолютный музыкальный слух | Слух отсутствует |
Волосы | Темные | Светлые |
Нерыжие | Рыжие | |
Курчавые | Волнистые | |
Волнистые | Прямые | |
Шерстистые | Гладкие | |
Облысение (у мужчин) | Норма | |
Норма | Облысение (у женщин) | |
Белая прядь | Норма | |
«Мыс вдовы» | Норма | |
Преждевременное поседение | Норма | |
Обильная волосатость тела | Мало волос на теле | |
Широкие пушистые брови | Норма | |
Синофриз | Норма | |
Руки | Праворукость | Леворукость |
Указательный палец руки длиннее безымянного (у мужчин) | Указательный палец руки длиннее безымянного (у женщин) | |
Большой палец руки толстый и короткий (расплющенный) | Нормальное строение пальца (нормальной длины, равномерной толщины, не широкий) | |
Ногти тонкие и плоские | Нормальные | |
Ногти очень твердые | Нормальные | |
Узоры на коже пальцев эллиптические | Узоры на коже пальцев циркулярные | |
Ноги | Предрасположенность к варикозному расширению вен | Норма |
Второй палец ноги длиннее большого | Второй палец ноги короче | |
Повышенная подвижность большого пальца | Норма | |
Кожа | Смуглая кожа | Светлая кожа |
Пегая пятнистость (белопегость) | Нормальный цвет кожи | |
Пигментированное пятно в области крестца | Отсутствует | |
Кожа толстая | Кожа тонкая | |
Кровь | Группы крови А, В и АВ | Группа крови О |
Наличие резус-фактора (Rh+) | Отсутствие резус-фактора (Rh-) | |
Обмен веществ | Ощущение вкуса фенилтиомочевины | Неспособность ощущать вкус фенилтиомочевины |
Способность к секреции в слюну агглютининов (т. н. «секреторы») | Отсутствие этого признака | |
Способность выделять в мочу после приема пищи метанэтиола (спаржи), бетанина (свеклы), β-аминоизомасляной кислоты (продукт катаболизма тимина) | Отсутствие этих признаков | |
Склонность к ожирению | Отсутствует | |
Наследственные заболевания рецессивного типа | Норма | Фенилкетонурия |
Норма | Предрасположенность к шизофрении | |
Норма | Предрасположенность к сахарному диабету | |
Норма | Парагемофилия (склонность к кожным и носовым кровотечениям) | |
Норма | Альбинизм | |
Норма | Пигментная ксеродерма | |
Норма | Врожденная глухонемота | |
Норма | Отсутствие резцов и клыков на верхней челюсти | |
Норма | Серповидноклеточная анемия | |
Норма | Талассемия | |
Норма | Муковисцидоз | |
Норма | Цистофиброз | |
Норма | Тританопия | |
Норма | Анэнцефалия | |
Наследственные заболевания доминантного типа | Полидактилия | Норма |
Брахидактилия | Норма | |
Синдактилия | Норма | |
Элиптоцитоз | Норма | |
Арахнодактилия | Норма | |
Ахондроплазия | Норма | |
Ключично-черепной дизостоз | Норма | |
Отсутствие малых коренных зубов | Норма | |
Нейрофиброматоз | Норма | |
Некоторые формы аниридии | Норма | |
Краниосиностоз | Норма | |
Миоплегия | Норма | |
Склонность к подагре | Норма | |
Гиперхолестеринемия | Норма | |
Множественная телеангиэктазия | Норма |
- ↑ Супотницкий М. В. Словарь генетических терминов. — М: Вузовская книга, 2007. — 508 с. — (Словари. Справочники). — ISBN 5-9502-0201-5.
- ↑ Инге-Вечтомов С.Г. Генетика с основами селекции: учебник для студентов высших учебных заведений / С. Г. Инге-Вечтомов. — СПб.: Изд-во Н-Л, 2010. — С. 597—658. — 720 с. — ISBN 978-5-94869-105-3.
- ↑ 1 2 3 О.-Я.Л.Бекиш. Медицинская биология. — Минск: Ураджай, 2000. — С. 171—173. — 518 с.
- ↑ Schaumann B., Alter M. Dermatoglyphics in medical disorders. — Springer Science & Business Media, 1976. — ISBN 978-3-642-51622-1.
Предмет генетики
Генетика (греч. γενητως — порождающий, происходящий от кого-то) — наука о наследственности и изменчивости. Это определение
отлично соответствует афоризму А.П. Чехова «Краткость — сестра таланта». В словах наследственность и изменчивость скрыта
вся сущность генетики, к изучению которой мы приступаем.
Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих
особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному
распределению генетического материала.
Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей.
Вследствие этого формируется материал для главного направленного фактора эволюции — естественного отбора, который
отбирает наиболее приспособленных особей.
Мы с вами истинное чудо генетики 🙂 Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них.
Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая
чудо вновь и вновь.
Ген и генетический код
Ген — участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация
в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.
В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК.
Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта — ведь ДНК везде
одинакова!
Это происходит потому, что в разных клетках одни гены «выключены», а другие «активны»: транскрипция идет только
с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.
Способ кодирования последовательности аминокислот в белке с помощью генов — универсальный способ для всех живых организмов,
доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:
- Триплетность
- Непрерывность
- Неперекрываемость
- Специфичность (однозначность)
- Избыточность (вырожденность)
- Колинеарность (лат. con — вместе и linea — линия)
- Однонаправленность
Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются
нонсенс кодонами (стоп-кодонами)
Информация считывается непрерывно — внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы
нецелесообразно разделять его на части. Стоп-кодоны — «знаки препинания» — есть между генами, которые кодируют разные белки.
Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного
триплета.
Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.
Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)
Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.
Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе
трансляции.
Аллельные гены
Аллельные гены (греч. allélon — взаимно) — гены, занимающие одинаковое положение в локусах гомологичных хромосом и
отвечающие за развитие альтернативных признаков. Такими признаками может являться карий и голубой цвет глаз, праворукость
и леворукость, вьющиеся и прямые волосы.
Локусом (лат. locus — место) — в генетике обозначают положение определенного гена в хромосоме.
Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами — AA, Aa, aa. Писать
только один ген было бы ошибкой.
Гены бывают рецессивные (подавляемые) и доминантные (подавляющие альтернативный ген). Доминантным геном (А) является карий цвет,
рецессивным (а) — голубой цвет глаз. Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А — доминантный ген подавляет
a — рецессивный ген.
Генотип организма (совокупность генов — AA, Aa, aa) может быть описан терминами:
- Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) — AA, aa
- Гетерозиготный (в случае, когда один ген доминантный, а другой — рецессивный) — Аа
Понять, какой признак являются подавляемым — рецессивным, а какой подавляющим — доминантным, можно в результате основного метода
генетики — гибридологического, то есть путем скрещивания особей и изучения их потомства.
Гаметы
Гамета (греч. gamos — женщина в браке) — половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая
половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом — n, при слиянии двух гамет набор восстанавливается до диплоидного — 2n.
Часто в генетических задачах требуется написать гаметы для особей с различным генотипом. Для правильного решения задачи
необходимо знать и понимать следующие правила:
- В гаметах представлены все гены, составляющие гаплоидный набор хромосом — n
- В каждую гамету попадает только одна хромосома из гомологичной пары
- Число возможных вариантов гамет можно рассчитать по формуле 2i = n, где i — число генов в
гетерозиготном состоянии в генотипе - Одну гомологичную хромосому ребенок всегда получает от отца, другую — от матери
- Организмы, у которых проявляется рецессивный признак — гомозиготны (аа). У гетерозигот всегда проявляется доминантный
ген (гетерозигота — Aa)
К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитывать исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 24 = 16 гамет.
Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa.
При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет — это ошибка.
К примеру, у особи «AA» мы напишем только одну гамету «А» и не будем повторяться, а у особи «Aa» напишем два типа гамет
«A» и «a», так как они различаются между собой.
Гибридологический метод
Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов
генетики, предложенный самим Грегором Менделем — гибридологический.
Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания.
С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных
генов.
Цитогенетический метод
С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить
карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии
наследственных заболеваний.
Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера,
Клайнфельтера).
Генеалогический метод (греч. γενεαλογία — родословная)
Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных.
Человек, с которого начинают составление родословной — пробанд. В результате изучения родословной врач-генетик
может предположить вероятность возникновения тех или иных заболеваний.
По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы
научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: «рецессивный он или доминантный?»,
«сцеплен с полом или не сцеплен?»
На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного)
рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в
следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:
- Заболевание проявляется только у гомозигот
- Родители клинически здоровы
- Если больны оба родителя, то все их дети будут больны
- В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
- Оба пола поражаются одинаково
Сейчас это может показаться сложным, но не волнуйтесь — решая генетические задачи вы сами «дойдете» до этих правил,
и через некоторое время они будут казаться вам очевидными.
Близнецовый метод
Применение близнецового метода в генетике — вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи «один в один»:
такими являются однояйцевые близнецы, их появление подчинено случайности.
Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа — совокупности внешних и
внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности
строения внутренних органов и т.д.
Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство — шизофрения
— развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается
сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
7) Основные термины — Генетика
Генетика – наука о наследственности и изменчивости организмов.
Наследственность – способность живых
организмов передавать свои признаки и свойства, а также особенности развития из
поколения в поколение.
Изменчивость – способность живых организмов
приобретать новые признаки и свойства.
Признак – особенность строения на любом
уровне организации или внешнее проявление действия гена.
Свойство – любая функциональная
особенность, в основе которой лежит один или несколько признаков.
Альтернативные признаки –
взаимоисключающие, контрастные признаки.
Ген – участок молекулы ДНК, отвечающий за
один признак, т.е. за структуру определенной молекулы белка.
Локус – местоположение гена в хромосоме.
Аллельные гены – гены, расположенные в
одних и тех же локусах гомологичных хромосом и ответственные за развитие одного
признака.
Геном – совокупность генов, характерных для
гаплоидного набора хромосом данного вида организмов.
Генотип – совокупность взаимодействующих
генов данного организма.
Фенотип – совокупность всех признаков и
свойств организма.
Доминантный признак – преобладающий
признак, проявляющийся в потомстве у гетерозиготных особей.
Рецессивный признак – подавляемый, внешне
исчезающий признак.
Гомозигота – зигота, имеющая одинаковые
аллели данного гена. В потомстве не дает расщепление.
Гетерозигота – зигота, имеющая два разных
аллеля по данному гену. В потомстве дает расщепление по данному признаку.
Гибридологический метод исследования – это
скрещивание (гибридизация) организмов, отличающихся друг от друга по одному или
нескольким признакам и детальный анализ потомства.
Гибриды – потомство от скрещивания 2-х
особей с различной наследственностью.
Моногибридное скрещивание – скрещивание
форм, отличающихся друг от друга
1. Генетика. История развития науки
Термин «генетика» предложил в \(1905\) году У. Бэтсон.
Генетика — наука, изучающая закономерности наследственности и изменчивости организмов.
Наследственностью называется свойство организмов передавать потомкам особенности строения, физиологические свойства и характер индивидуального развития.
Изменчивостью называется способность живых организмов изменять свои признаки.
В своём развитии генетика прошла ряд этапов.
Наследственностью люди интересовались очень давно. С развитием сельского хозяйства сформировалась прикладная наука селекция, которая занималась созданием и формированием новых пород животных и сортов растений. Но объяснить механизмы передачи признаков потомкам селекционеры не могли.
Первый этап развития генетики — изучение наследственности и изменчивости на организменном уровне.
Этот этап связан с работами Г. Менделя. В \(1865\) г. в работе «Опыты над растительными гибридами» он описал результаты своих исследований закономерностей наследования признаков у гороха.
Г. Мендель установил дискретность (делимость) наследственных факторов и разработал гибридологический метод изучения наследственности.
Дискретность наследственности состоит в том, что отдельные свойства и признаки организма развиваются под контролем наследственных факторов, которые при слиянии гамет и образовании зиготы не смешиваются, а при формировании новых гамет наследуются независимо друг от друга.
В \(1909\) г. В. Иоганнсен назвал эти факторы генами.
Значение открытий Г. Менделя оценили только после того, как его результаты были подтверждены в \(1900\) г. тремя биологами независимо друг от друга: Х. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Этот год считается годом возникновения науки генетики.
Менделевские законы наследственности заложили основу теории гена, а генетика превратилась в быстро развивающуюся отрасль биологии.
В \(1901\)–\(1903\) гг. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.
Второй этап развития генетики — изучение закономерностей наследования признаков на хромосомном уровне.
Была установлена взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз).
Изучение строения клетки привело к уточнению строения, формы и количества хромосом и помогло установить, что гены — это участки хромосом.
В \(1910\)–\(1911\) гг. американский генетик Т. Г. Морган и его сотрудники провели исследования закономерностей наследования на мушках дрозофилах. Они установили, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.
Морган установил также закономерности наследования признаков, сцепленных с полом.
Эти открытия позволили сформулировать хромосомную теорию наследственности.
Третий этап развития генетики — изучение наследственности и изменчивости на молекулярном уровне.
На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория «один ген — один фермент»: каждый ген контролирует синтез одного фермента, а фермент контролирует одну биохимическую реакцию.
В \(1953\) г. Ф. Крик и Дж. Уотсон создали модель молекулы ДНК в виде двойной спирали и объяснили способность ДНК к самоудвоению. Стал понятен механизм изменчивости: любые отклонения в структуре гена, однажды возникнув, в дальнейшем воспроизводятся в дочерних нитях ДНК.
Эти положения были подтверждены экспериментами. Уточнилось понятие гена, был расшифрован генетический код и изучен механизм биосинтеза. Были разработаны методы искусственного получения мутаций и с их помощью созданы новые ценные сорта растений и штаммы микроорганизмов.
В последние десятилетия сформировалась генная инженерия — система приёмов, позволяющих синтезировать новый ген или выделить его из одного организма и ввести в генетический аппарат другого организма.
В последнее десятилетие \(20\) века были расшифрованы геномы многих простых организмов. В начала \(21\) века (\(2003\) г.) был завершён проект по расшифровке генома человека.
На сегодняшний день существуют базы данных геномов многих организмов. Наличие такой базы данных человека имеет большое значение в предупреждении и исследовании многих заболеваний.
Генотип — совокупность генетической информации, закодированной в генах клетки или организма.
Кариотип — совокупность качественных и количественных признаков хромосомного набора организма.
Фенотип — результат взаимодействия генотипа с факторами окружающей среды, совокупность всех признаков и свойств организма.
Альтернативные (аллельные) признаки — контрастные, взаимоисключающие признаки (белый — красный, высокий — низкий).
Доминантный признак — преобладающий признак, подавляющий развитие другого альтернативного признака.
Рецессивный признак — подавляемый признак.
Доминирование — подавление одного альтернативного признака другим.
Ген — участок ДНК, кодирующий первичную структуру одного белка.
Локус — участок хромосомы, в котором расположен ген.
Аллельные гены — различные состояния одного гена.
Гомологичные хромосомы — пары хромосом, одинаковых по размерам, форме и набору генов. Аллельные гены занимают в гомологичных хромосомах одинаковые локусы.
Аллели могут быть гомозиготными или гетерозиготными, т. е. находиться в одинаковом или различном состоянии.
Символы, используемые в генетике
P — генотипы родительских форм;
F — генотипы потомства;
A — доминантный ген;
a — рецессивный ген;
Aa — гетерозиготное состояние двух аллельных генов;
AA — гомозиготное состояние доминантных генов;
aa — гомозиготное состояние рецессивных генов;
AaBb — дигетерозигота;
AaBbCc — тригетерозигота;
«\(×\)» — скрещивание;
\(♀\) —материнский организм;
\(♂\) — отцовский организм.
Генетика — Википедия
Гене́тика (от греч. γενητως — порождающий, происходящий от кого-то[1][2][3]) — наука о закономерностях наследственности и изменчивости.
Этот взгляд на генетику не разделяют многие современные учёные. По мнению ведущих североамериканских генетиков, таких, как Энтони Грифитс[4], Джеффри Миллер[5], Девид Судзуки, Ричард Левонтин и др., генетику следует определить как науку о генах:
….Некоторые определяют её [генетику] как науку о наследственности, хотя наследственные явления представляли интерес для людей задолго до того, как биология и генетика оформились в качестве научных дисциплин. Древние народы улучшали растительные культуры и одомашненных животных, выбирая для разведения экземпляры, обладающие желательными признаками. Большой интерес вызывали у них и такие вопросы, как: «Почему дети напоминают своих родителей?» или «Какие семейные особенности могут влиять на течение различных заболеваний?» Но этих людей нельзя было назвать генетиками. Генетика как набор принципов и аналитических процедур не существовала до 60-х годов XIX века, когда монах Августинского монастыря Грегор Мендель выполнил ряд экспериментов, указывающих на существование биологических структур, которые мы теперь называем генами. Генетика происходит от слова «ген», и именно гены находятся в центре внимания исследователей. Это не зависит от того, изучают ли генетики молекулярный, клеточный, организменный, семейный, популяционный или эволюционный уровни. Проще говоря, генетика — это наука о генах.Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, eds. (2000)[6]. |
В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие.
Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии[7].
Введение
Первоначально генетика изучала общие закономерности наследственности и изменчивости только на основании фенотипических данных.
Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин.
Сегодня известно, что гены действительно существуют и являются специальным образом отмеченными участками ДНК или РНК — молекулы, в которой закодирована вся генетическая информация.
У эукариотических организмов ДНК свёрнута в хромосомы и находится в ядре клетки. Кроме того, собственная ДНК имеется внутри митохондрий и хлоропластов (у растений).
У прокариот ДНК, как правило, замкнута в кольцо (бактериальная хромосома, или генофор) и находится в цитоплазме. Часто в клетках прокариот присутствует молекулы ДНК меньшего размера — плазмиды.
Законы Менделя
- Закон единообразия гибридов первого поколения
- Закон расщепления признаков
- Закон независимого наследования признаков
История
Работы Грегора Менделя
В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работа «Опыты над растительными гибридами» была опубликована в трудах общества в 1866 году). Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице, на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).
Классическая генетика
В начале XX века работы Менделя вновь привлекли внимание в связи с исследованиями Карла Корренса, Эриха Чермака и Гуго Де Фриза по гибридизации растений, в которых были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве.
Вскоре английский натуралист Уильям Бэтсон ввёл в употребление название новой научной дисциплины: генетика (в 1905 году в частном письме и в 1906 году публично). В 1909 году датским ботаником Вильгельмом Йогансеном введён в употребление термин «ген».
Важным вкладом в развитие генетики стала хромосомная теория наследственности, разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila melanogaster. Изучение закономерностей сцепленного наследования позволило путём анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910—1913 гг.).
Молекулярная генетика
Эпоха молекулярной генетики начинается с появившихся в 1940—1950-х гг. работ, доказавших ведущую роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, триплетного кода, описание механизмов биосинтеза белка, обнаружение рестриктаз и секвенирование ДНК.
Разделы генетики
Модельные организмы
Изначально наследование изучалось у широкого диапазона организмов, однако учёные стали специализироваться на генетике конкретных видов. Модельными становятся те организмы, по которым уже накоплено много научных данных, которые уже исследовались и легко содержатся в лабораторных условиях. Модельные организмы выбирались отчасти благодаря приоритетности — короткому времени генерации (быстрой смены поколений) и возможности генетических манипуляций. В результате, в генетических исследованиях некоторые виды стали основными[8].
К широко используемым в генетических исследованиях модельным организмам относят бактерию Escherichia coli, растение Arabidopsis thaliana, дрожжи Saccharomyces cerevisiae, нематоду Caenorhabditis elegans, плодовую муху Drosophila melanogaster и обыкновенную домовую мышь (Mus musculus).
См. также
Примечания
Литература
- Айала Ф., Кайгер Дж. Современная генетика: В 3 т. М.: Мир, 1987—1988. Т. 1. 295 с. Т. 2 368 с. Т. 3. 335 с.
- Алиханян С. И., Акифьев А. П., Чернин Л. С. Общая генетика. — М.: Высш. шк., 1985. — 446 с.
- Гершензон С. М. Основы современной генетики. — Киев: Наук. думка, 1983. — 558 с.
- Гершкович И. Генетика. — М.: Наука, 1968. — 698 с.
- Дубинин Н. П. Генетика. — Кишинёв: Штииница, 1985. — 533 с.
- Жимулёв И. Ф. Общая и молекулярная генетика: учебное пособие для студентов университетов, обучающихся по направлению 510600 — Биология и биологическим специальностям. — 2-е, испр. и доп. — Новосибирск: Новосибирск : Сиб. унив. изд-во, 2003. — 478 с. — 2500 экз. — ISBN 5-94087-077-5
- Инге-Вечтомов С. Г. Генетика с основами селекции. 2-е изд., перераб. и доп. — СПб.: 2010. — 720 с.
- Клаг Уильям С., Каммингс Майкл Р. Основы генетики. — М.: Техносфера, 2007. — 896 с.
- Льюин Б. Гены: Пер. с англ. — М.: Мир, 1987. — 544 с.
- Пухальский В. А. Введение в генетику. — М.: КолосС, 2007. — 224 с. (Учебники и учеб. пособия для студентов высш. учеб. заведений)
- Сингер М., Берг П. Гены и геномы: В 2 т. М.: Мир, 1998. Т. 1. 373 с. Т. 2. 391 с.
- Мюнтцинг А. Генетика. — М.: Мир, 1967. — 610 с.
Ссылки
генетика | История, Биология, Хронология и Факты
Genetics, изучение наследственности в целом и генов в частности. Генетика является одной из центральных опор биологии и частично совпадает со многими другими областями, такими как сельское хозяйство, медицина и биотехнология.
Верхние вопросы
Что такое генетика? Генетика является одной из центральных опор биологии и частично совпадает со многими другими областями, такими как сельское хозяйство, медицина и биотехнология. Является ли интеллект генетическим?
Интеллект — это очень сложная человеческая черта, генетика которой в течение некоторого времени была предметом споров. Даже грубо измеренный с помощью разнообразных когнитивных тестов, интеллект показывает значительный вклад со стороны окружающей среды.
Как проводится генетическое тестирование? были рассмотрены.Например, вавилонская табличка, которой более 6000 лет, показывает родословные лошадей и указывает возможные наследственные признаки. Другие старинные рисунки показывают перекрестное опыление финиковых пальм. Однако большинство механизмов наследственности оставалось загадкой до 19-го века, когда началась генетика как систематическая наука.
Генетика возникла из идентификации генов, фундаментальных единиц, ответственных за наследственность. Генетика может быть определена как изучение генов на всех уровнях, включая способы, которыми они действуют в клетке, и способы, которыми они передаются от родителей к потомству.Современная генетика фокусируется на химическом веществе, из которого состоят гены, называемом дезоксирибонуклеиновой кислотой или ДНК, и на способах, которыми она влияет на химические реакции, которые составляют живые процессы в клетке. Действие гена зависит от взаимодействия с окружающей средой. Зеленые растения, например, имеют гены, содержащие информацию, необходимую для синтеза фотосинтетического пигмента хлорофилла, который придает им зеленый цвет. Хлорофилл синтезируется в среде, содержащей свет, потому что ген хлорофилла экспрессируется только тогда, когда он взаимодействует со светом.Если растение помещается в темную среду, синтез хлорофилла прекращается, потому что ген больше не экспрессируется. Мендель подозревал, что признаки были унаследованы как отдельные единицы, и, хотя он ничего не знал о физической или химической природе генов в то время, его единицы стали основой для развития нынешнего понимания наследственности. Все современные исследования в области генетики можно отнести к открытию Менделем законов, регулирующих наследование признаков.Слово genetics было введено в 1905 году английским биологом Уильямом Бейтсоном, который был одним из первооткрывателей работы Менделя и стал поборником принципов наследования Менделя.
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской.
Подпишитесь сегодня
Исторический фон
Древние теории пангенеза и крови в наследственности
Хотя научные доказательства закономерностей генетического наследования не появлялись до работ Менделя, история показывает, что человечество должно было интересоваться наследственностью задолго до зари цивилизации.Сначала любопытство должно было основываться на сходстве человеческих семей, таких как сходство в строении тела, голосе, походке и жестах. Такие понятия способствовали созданию семейных и королевских династий. Ранние кочевые племена интересовались качествами животных, которые они пасли и одомашнили и, несомненно, разводили выборочно. Первые человеческие поселения, которые практиковали земледелие, похоже, выбрали отборные растения с благоприятными качествами. На древних гробницах изображены родословные племенных скаковых лошадей, содержащие четкие описания наследования нескольких различных физических признаков у лошадей.Несмотря на этот интерес, первые зарегистрированные предположения о наследственности не существовали до времен древних греков; некоторые аспекты их идей и сегодня считаются актуальными. гипотеза, известная как пангенезис. Он постулировал, что все органы тела родителя испускали невидимые «семена», которые были похожи на миниатюрные строительные компоненты и передавались во время полового акта, собираясь в утробе матери, чтобы сформировать ребенка.
Аристотель (384–322 гг. До н.э.) подчеркнул важность крови в наследственности. Он думал, что кровь обеспечивает генеративный материал для построения всех частей тела взрослого, и он полагал, что кровь была основой для передачи этой генеративной силы следующему поколению. Фактически он полагал, что сперма мужчины была очищенной кровью и что менструальная кровь женщины была ее эквивалентом спермы. Эти мужские и женские вклады объединились в утробе матери, чтобы родить ребенка. Кровь содержала какой-то тип наследственных эссенций, но он полагал, что ребенок будет развиваться под воздействием этих эссенций, а не из самих эссенций.
Идеи Аристотеля о роли крови в родах, вероятно, были источником все еще распространенного представления о том, что кровь каким-то образом участвует в наследственности. Сегодня люди все еще говорят об определенных чертах как о «в крови» и о «кровных линиях» и «кровных связях». Греческая модель наследования, в которой использовалось огромное количество веществ, отличалась от модели Менделя. Идея Менделя заключалась в том, что различия между индивидами определяются различиями в единичных, но мощных наследственных факторах.Эти единичные наследственные факторы были идентифицированы как гены. Копии генов передаются через сперму и яйцеклетку и направляют развитие потомства. Гены также несут ответственность за воспроизводство отличительных черт обоих родителей, которые видны у их детей. В 17 и 18 веках была введена идея преформации. Ученые, использующие недавно разработанные микроскопы, предположили, что они могут видеть миниатюрные копии людей внутри головок сперматозоидов.Французский биолог Жан-Батист Ламарк привел идею «наследования приобретенных признаков» не как объяснение наследственности, а как модель эволюции. Он жил в то время, когда постоянство видов считалось само собой разумеющимся, однако он утверждал, что это постоянство встречается только в постоянной среде. Он провозгласил закон использования и неиспользования, который гласит, что, когда определенные органы становятся специально развитыми в результате каких-либо экологических потребностей, такое состояние развития является наследственным и может передаваться потомству.Он полагал, что таким образом на протяжении многих поколений жирафы могли возникать от оленеподобных животных, которые должны были вытягивать шею, чтобы достичь высоких листьев на деревьях. Тем не менее, наблюдения Чарльза Дарвина во время его кругосветного плавания на борту HMS Beagle (1831–36) свидетельствовали о естественном отборе и его предположении, что люди и животные имеют общую родословную.
www.britannica.com
Модель молекулы ДНК.
Живые вещи состоят из миллионов крошечных автономных компонентов, называемых клетками. Внутри каждой клетки находятся длинные и сложные молекулы, называемые дезоксирибонуклеиновой кислотой. [6] DNA хранит информацию, которая сообщает клеткам, как создать это живое существо. Части этой информации, которые рассказывают, как сделать одну небольшую часть или характеристику живого существа — рыжие волосы, голубые глаза или стремление быть высоким — известны как гены.
Каждая клетка в одном и том же живом существе имеет одну и ту же ДНК, но только каждая из них используется в каждой клетке.Например, некоторые гены, которые говорят, как сделать части печени, выключены в мозге. Какие гены используются, могут также меняться со временем. Например, у ребенка на ранних сроках беременности используется много генов, которые позже не используются.
У человека есть две копии каждого гена, одна от его матери, а другая от его отца. [7] Может быть несколько типов одного гена, которые дают разные инструкции: одна версия может вызвать у человека голубые глаза другой может заставить их иметь коричневый цвет.Эти разные версии известны как alleles гена.
Поскольку живое существо имеет две копии каждого гена, [8] может иметь два разных его аллеля одновременно. Часто один аллель будет доминантным
Большинство характеристик, которые вы можете видеть в живом существе, имеют несколько генов, которые влияют на них. И многие гены оказывают множественное влияние на организм, потому что их функция не будет иметь одинаковый эффект в каждой ткани. Множественные эффекты одного гена называются pleiotropism. Весь набор генов называется -генотипом
Пременделевские идеи [изменить | изменить источник]
Мы знаем, что человек начал разводить домашних животных с ранних времен, вероятно, до изобретения сельского хозяйства.Это было совершенно неправильно, и сегодня не играет никакой роли в науке. [10] Дарвин был прав в одном: все, что происходит в эволюции, должно происходить посредством наследственности, и поэтому точная наука о генетике является фундаментальной для теории эволюции. , Это «спаривание» между генетикой и эволюцией заняло много лет. Это привело к современному эволюционному синтезу.
Мендельская генетика [изменить | изменить источник]
Грегор Мендель, отец современной генетики.
Основные правила генетики были впервые обнаружены монахом по имени Грегор Мендель в 1865 году.
simple.wikipedia.org
Генетическое тестирование может предоставить информацию о генах и хромосомах человека. Доступные типы тестирования включают:
Скрининг новорожденных используется сразу после рождения для выявления генетических нарушений, которые можно лечить в раннем возрасте. Миллионы детей проходят тестирование каждый год в Соединенных Штатах. Все штаты в настоящее время тестируют детей на наличие фенилкетонурии (генетическое расстройство, которое вызывает умственную отсталость, если его не лечить) и врожденного гипотиреоза (расстройство щитовидной железы).В большинстве штатов также проводится проверка на наличие других генетических нарушений. Во многих случаях генетическое тестирование используется для подтверждения диагноза, когда подозревается конкретное состояние на основании физических признаков и симптомов. Диагностическое тестирование может быть выполнено до рождения или в любое время в течение жизни человека, но не доступно для всех генов или всех генетических состояний. Результаты диагностического теста могут повлиять на выбор человека в отношении медицинского обслуживания и лечения расстройства.
Карри-тестирование используется для идентификации людей, которые несут одну копию генной мутации, которая, если она присутствует в двух копиях, вызывает генетическое заболевание. Этот тип тестирования предлагается лицам, имеющим в анамнезе генетическое заболевание, а также людям в определенных этнических группах с повышенным риском определенных генетических заболеваний. Если оба родителя проходят тестирование, тест может предоставить информацию о риске пары иметь ребенка с генетическим заболеванием.
Пренатальное тестирование используется для выявления изменений в генах или хромосомах плода до рождения. Этот тип тестирования предлагается во время беременности, если существует повышенный риск того, что у ребенка будет генетическое или хромосомное расстройство. В некоторых случаях пренатальное тестирование может уменьшить неопределенность пары или помочь им принять решение о беременности. Однако он не может идентифицировать все возможные наследственные расстройства и врожденные дефекты.Эти тесты могут быть полезны для людей, у которых есть член семьи с генетическим заболеванием, но у которых самих нет признаков расстройства во время тестирования. Прогнозирующее тестирование может выявить мутации, которые увеличивают риск развития у человека расстройств на генетической основе, таких как определенные виды рака. Предсимптомное тестирование может определить, будет ли у человека развиваться генетическое заболевание, такое как наследственный гемохроматоз (нарушение перегрузки железом), до появления каких-либо признаков или симптомов.Результаты прогностического и бессимптомного тестирования могут предоставить информацию о риске человека в отношении развития конкретного расстройства и помочь с принятием решений о медицинском обслуживании. В отличие от тестов, описанных выше, судебно-медицинская экспертиза не используется для выявления генных мутаций, связанных с заболеванием. Этот тип тестирования может выявить жертв преступлений или катастроф, исключить или привлечь подозреваемого в совершении преступления или установить биологические отношения между людьми (например, отцовство).
ghr.nlm.nih.gov